########################################################################### =head1 NAME Danga::Socket - Event loop and event-driven async socket base class =head1 SYNOPSIS package My::Socket use Danga::Socket; use base ('Danga::Socket'); use fields ('my_attribute'); sub new { my My::Socket $self = shift; $self = fields::new($self) unless ref $self; $self->SUPER::new( @_ ); $self->{my_attribute} = 1234; return $self; } sub event_err { ... } sub event_hup { ... } sub event_write { ... } sub event_read { ... } sub close { ... } $my_sock->tcp_cork($bool); # write returns 1 if all writes have gone through, or 0 if there # are writes in queue $my_sock->write($scalar); $my_sock->write($scalarref); $my_sock->write(sub { ... }); # run when previous data written $my_sock->write(undef); # kick-starts # read max $bytecount bytes, or undef on connection closed $scalar_ref = $my_sock->read($bytecount); # watch for writability. not needed with ->write(). write() # will automatically turn on watch_write when you wrote too much # and turn it off when done $my_sock->watch_write($bool); # watch for readability $my_sock->watch_read($bool); # if you read too much and want to push some back on # readable queue. (not incredibly well-tested) $my_sock->push_back_read($buf); # scalar or scalar ref Danga::Socket->AddOtherFds(..); Danga::Socket->SetLoopTimeout($millisecs); Danga::Socket->DescriptorMap(); Danga::Socket->WatchedSockets(); # count of DescriptorMap keys Danga::Socket->SetPostLoopCallback($code); Danga::Socket->EventLoop(); =head1 DESCRIPTION This is an abstract base class for objects backed by a socket which provides the basic framework for event-driven asynchronous IO, designed to be fast. Danga::Socket is both a base class for objects, and an event loop. Callers subclass Danga::Socket. Danga::Socket's constructor registers itself with the Danga::Socket event loop, and invokes callbacks on the object for readability, writability, errors, and other conditions. Because Danga::Socket uses the "fields" module, your subclasses must too. =head1 MORE INFO For now, see servers using Danga::Socket for guidance. For example: perlbal, mogilefsd, or ddlockd. =head1 AUTHORS Brad Fitzpatrick - author Michael Granger - docs, testing Mark Smith - contributor, heavy user, testing Matt Sergeant - kqueue support =head1 BUGS Not documented enough. epoll is only used on Linux when the arch is one of x86, x86_64, ia64, ppc, and ppc64. Mail me if you want to use this module with epoll mode on something else. (ideally with a patch) =head1 LICENSE License is granted to use and distribute this module under the same terms as Perl itself. =cut ########################################################################### package Danga::Socket; use strict; use POSIX (); my $opt_bsd_resource = eval "use BSD::Resource; 1;"; use vars qw{$VERSION}; $VERSION = "1.43"; use fields ('sock', # underlying socket 'fd', # numeric file descriptor 'write_buf', # arrayref of scalars, scalarrefs, or coderefs to write 'write_buf_offset', # offset into first array of write_buf to start writing at 'write_buf_size', # total length of data in all write_buf items 'read_push_back', # arrayref of "pushed-back" read data the application didn't want 'closed', # bool: socket is closed 'corked', # bool: socket is corked 'event_watch', # bitmask of events the client is interested in (POLLIN,OUT,etc.) ); use Errno qw(EINPROGRESS EWOULDBLOCK EISCONN ENOTSOCK EPIPE EAGAIN EBADF ECONNRESET ENOPROTOOPT); use Socket qw(IPPROTO_TCP); use Carp qw{croak confess}; use constant TCP_CORK => 3; # FIXME: not hard-coded (Linux-specific too) use constant DebugLevel => 0; # Explicitly define the poll constants, as either one set or the other won't be # loaded. They're also badly implemented in IO::Epoll: # The IO::Epoll module is buggy in that it doesn't export constants efficiently # (at least as of 0.01), so doing constants ourselves saves 13% of the user CPU # time use constant EPOLLIN => 1; use constant EPOLLOUT => 4; use constant EPOLLERR => 8; use constant EPOLLHUP => 16; use constant EPOLL_CTL_ADD => 1; use constant EPOLL_CTL_DEL => 2; use constant EPOLL_CTL_MOD => 3; use constant POLLIN => 1; use constant POLLOUT => 4; use constant POLLERR => 8; use constant POLLHUP => 16; use constant POLLNVAL => 32; our $HAVE_KQUEUE = eval { require IO::KQueue; 1 }; our ( $HaveEpoll, # Flag -- is epoll available? initially undefined. $HaveKQueue, %DescriptorMap, # fd (num) -> Danga::Socket object %PushBackSet, # fd (num) -> Danga::Socket (fds with pushed back read data) $Epoll, # Global epoll fd (for epoll mode only) $KQueue, # Global kqueue fd (for kqueue mode only) @ToClose, # sockets to close when event loop is done %OtherFds, # A hash of "other" (non-Danga::Socket) file # descriptors for the event loop to track. $PostLoopCallback, # subref to call at the end of each loop, if defined $LoopTimeout, # timeout of event loop in milliseconds $DoProfile, # if on, enable profiling %Profiling, # what => [ utime, stime, calls ] $TryEpoll, # whether epoll should be attempted to be used. $DoneInit, # if we've done the one-time module init yet ); Reset(); ##################################################################### ### C L A S S M E T H O D S ##################################################################### # (CLASS) method: reset all state sub Reset { %DescriptorMap = (); %PushBackSet = (); @ToClose = (); %OtherFds = (); $PostLoopCallback = undef; $LoopTimeout = -1; # no timeout by default $DoProfile = 0; %Profiling = (); } ### (CLASS) METHOD: HaveEpoll() ### Returns a true value if this class will use IO::Epoll for async IO. sub HaveEpoll { $HaveEpoll }; ### (CLASS) METHOD: WatchedSockets() ### Returns the number of file descriptors which are registered with the global ### poll object. sub WatchedSockets { return scalar keys %DescriptorMap; } *watched_sockets = *WatchedSockets; ### (CLASS) METHOD: EnableProfiling() ### Turns profiling on, clearing current profiling data. sub EnableProfiling { if ($opt_bsd_resource) { %Profiling = (); $DoProfile = 1; return 1; } return 0; } ### (CLASS) METHOD: DisableProfiling() ### Turns off profiling, but retains data up to this point sub DisableProfiling { $DoProfile = 0; } ### (CLASS) METHOD: ProfilingData() ### Returns reference to a hash of data in format above (see %Profiling) sub ProfilingData { return \%Profiling; } ### (CLASS) METHOD: ToClose() ### Return the list of sockets that are awaiting close() at the end of the ### current event loop. sub ToClose { return @ToClose; } ### (CLASS) METHOD: OtherFds( [%fdmap] ) ### Get/set the hash of file descriptors that need processing in parallel with ### the registered Danga::Socket objects. sub OtherFds { my $class = shift; if ( @_ ) { %OtherFds = @_ } return wantarray ? %OtherFds : \%OtherFds; } ### (CLASS) METHOD: AddOtherFds( [%fdmap] ) ### Add fds to the OtherFds hash for processing. sub AddOtherFds { my $class = shift; %OtherFds = ( %OtherFds, @_ ); # FIXME investigate what happens on dupe fds return wantarray ? %OtherFds : \%OtherFds; } ### (CLASS) METHOD: SetLoopTimeout( $timeout ) ### Set the loop timeout for the event loop to some value in milliseconds. sub SetLoopTimeout { return $LoopTimeout = $_[1] + 0; } ### (CLASS) METHOD: DescriptorMap() ### Get the hash of Danga::Socket objects keyed by the file descriptor they are ### wrapping. sub DescriptorMap { return wantarray ? %DescriptorMap : \%DescriptorMap; } *descriptor_map = *DescriptorMap; *get_sock_ref = *DescriptorMap; sub init_poller { return if $DoneInit; $DoneInit = 1; if ($HAVE_KQUEUE) { $KQueue = IO::KQueue->new(); $HaveKQueue = $KQueue >= 0; if ($HaveKQueue) { *EventLoop = *KQueueEventLoop; } } elsif ($TryEpoll) { $Epoll = eval { epoll_create(1024); }; $HaveEpoll = defined $Epoll && $Epoll >= 0; if ($HaveEpoll) { *EventLoop = *EpollEventLoop; } } if (!$HaveEpoll && !$HaveKQueue) { require IO::Poll; *EventLoop = *PollEventLoop; } } ### FUNCTION: EventLoop() ### Start processing IO events. sub EventLoop { my $class = shift; init_poller(); if ($HaveEpoll) { EpollEventLoop($class); } elsif ($HaveKQueue) { KQueueEventLoop($class); } else { PollEventLoop($class); } } ## profiling-related data/functions our ($Prof_utime0, $Prof_stime0); sub _pre_profile { ($Prof_utime0, $Prof_stime0) = getrusage(); } sub _post_profile { # get post information my ($autime, $astime) = getrusage(); # calculate differences my $utime = $autime - $Prof_utime0; my $stime = $astime - $Prof_stime0; foreach my $k (@_) { $Profiling{$k} ||= [ 0.0, 0.0, 0 ]; $Profiling{$k}->[0] += $utime; $Profiling{$k}->[1] += $stime; $Profiling{$k}->[2]++; } } ### The epoll-based event loop. Gets installed as EventLoop if IO::Epoll loads ### okay. sub EpollEventLoop { my $class = shift; foreach my $fd ( keys %OtherFds ) { if (epoll_ctl($Epoll, EPOLL_CTL_ADD, $fd, EPOLLIN) == -1) { print STDERR "epoll_ctl(): failure adding fd=$fd; $! (", $!+0, ")\n"; } } while (1) { my @events; my $i; my $evcount; # get up to 1000 events, class default timeout value while (($evcount = epoll_wait($Epoll, 1000, $LoopTimeout, \@events)) >= 0) { EVENT: for ($i=0; $i<$evcount; $i++) { my $ev = $events[$i]; # it's possible epoll_wait returned many events, including some at the end # that ones in the front triggered unregister-interest actions. if we # can't find the %sock entry, it's because we're no longer interested # in that event. my Danga::Socket $pob = $DescriptorMap{$ev->[0]}; my $code; my $state = $ev->[1]; # if we didn't find a Perlbal::Socket subclass for that fd, try other # pseudo-registered (above) fds. if (! $pob) { if (my $code = $OtherFds{$ev->[0]}) { $code->($state); } else { my $fd = $ev->[0]; print STDERR "epoll() returned fd $fd w/ state $state for which we have no mapping. removing.\n"; POSIX::close($fd); epoll_ctl($Epoll, EPOLL_CTL_DEL, $fd, 0); } next; } DebugLevel >= 1 && $class->DebugMsg("Event: fd=%d (%s), state=%d \@ %s\n", $ev->[0], ref($pob), $ev->[1], time); if ($DoProfile) { my $class = ref $pob; # call profiling action on things that need to be done if ($state & EPOLLIN && ! $pob->{closed}) { _pre_profile(); $pob->event_read; _post_profile("$class-read"); } if ($state & EPOLLOUT && ! $pob->{closed}) { _pre_profile(); $pob->event_write; _post_profile("$class-write"); } if ($state & (EPOLLERR|EPOLLHUP)) { if ($state & EPOLLERR && ! $pob->{closed}) { _pre_profile(); $pob->event_err; _post_profile("$class-err"); } if ($state & EPOLLHUP && ! $pob->{closed}) { _pre_profile(); $pob->event_hup; _post_profile("$class-hup"); } } next; } # standard non-profiling codepat $pob->event_read if $state & EPOLLIN && ! $pob->{closed}; $pob->event_write if $state & EPOLLOUT && ! $pob->{closed}; if ($state & (EPOLLERR|EPOLLHUP)) { $pob->event_err if $state & EPOLLERR && ! $pob->{closed}; $pob->event_hup if $state & EPOLLHUP && ! $pob->{closed}; } } return unless PostEventLoop(); } print STDERR "Event loop ending; restarting.\n"; } exit 0; } sub PostEventLoop { # fire read events for objects with pushed-back read data my $loop = 1; while ($loop) { $loop = 0; foreach my $fd (keys %PushBackSet) { my Danga::Socket $pob = $PushBackSet{$fd}; next unless (! $pob->{closed} && $pob->{event_watch} & POLLIN); $loop = 1; $pob->event_read; } } # now we can close sockets that wanted to close during our event processing. # (we didn't want to close them during the loop, as we didn't want fd numbers # being reused and confused during the event loop) $_->close while ($_ = shift @ToClose); # now we're at the very end, call callback if defined if (defined $PostLoopCallback) { return $PostLoopCallback->(\%DescriptorMap, \%OtherFds); } return 1; } ### The fallback IO::Poll-based event loop. Gets installed as EventLoop if ### IO::Epoll fails to load. sub PollEventLoop { my $class = shift; my Danga::Socket $pob; while (1) { # the following sets up @poll as a series of ($poll,$event_mask) # items, then uses IO::Poll::_poll, implemented in XS, which # modifies the array in place with the even elements being # replaced with the event masks that occured. my @poll; foreach my $fd ( keys %OtherFds ) { push @poll, $fd, POLLIN; } while ( my ($fd, $sock) = each %DescriptorMap ) { push @poll, $fd, $sock->{event_watch}; } # if nothing to poll, either end immediately (if no timeout) # or just keep calling the callback unless (@poll) { my $timeout = $LoopTimeout > 0 ? $LoopTimeout : 1000; select undef, undef, undef, ($timeout / 1000); return unless PostEventLoop(); next; } my $count = IO::Poll::_poll($LoopTimeout, @poll); unless ($count) { return unless PostEventLoop(); next; } # Fetch handles with read events while (@poll) { my ($fd, $state) = splice(@poll, 0, 2); next unless $state; $pob = $DescriptorMap{$fd}; if (!$pob) { if (my $code = $OtherFds{$fd}) { $code->($state); } next; } $pob->event_read if $state & POLLIN && ! $pob->{closed}; $pob->event_write if $state & POLLOUT && ! $pob->{closed}; $pob->event_err if $state & POLLERR && ! $pob->{closed}; $pob->event_hup if $state & POLLHUP && ! $pob->{closed}; } return unless PostEventLoop(); } exit 0; } ### The kqueue-based event loop. Gets installed as EventLoop if IO::KQueue works ### okay. sub KQueueEventLoop { my $class = shift; foreach my $fd (keys %OtherFds) { $KQueue->EV_SET($fd, IO::KQueue::EVFILT_READ(), IO::KQueue::EV_ADD()); } while (1) { my @ret = $KQueue->kevent($LoopTimeout); if (!@ret) { foreach my $fd ( keys %DescriptorMap ) { my Danga::Socket $sock = $DescriptorMap{$fd}; if ($sock->can('ticker')) { $sock->ticker; } } } foreach my $kev (@ret) { my ($fd, $filter, $flags, $fflags) = @$kev; my Danga::Socket $pob = $DescriptorMap{$fd}; if (!$pob) { if (my $code = $OtherFds{$fd}) { $code->($filter); } next; } DebugLevel >= 1 && $class->DebugMsg("Event: fd=%d (%s), flags=%d \@ %s\n", $fd, ref($pob), $flags, time); $pob->event_read if $filter == IO::KQueue::EVFILT_READ() && !$pob->{closed}; $pob->event_write if $filter == IO::KQueue::EVFILT_WRITE() && !$pob->{closed}; if ($flags == IO::KQueue::EV_EOF() && !$pob->{closed}) { if ($fflags) { $pob->event_err; } else { $pob->event_hup; } } } return unless PostEventLoop(); } exit(0); } ### (CLASS) METHOD: DebugMsg( $format, @args ) ### Print the debugging message specified by the C-style I and ### I sub DebugMsg { my ( $class, $fmt, @args ) = @_; chomp $fmt; printf STDERR ">>> $fmt\n", @args; } ### METHOD: new( $socket ) ### Create a new Danga::Socket object for the given I which will react ### to events on it during the C. sub new { my Danga::Socket $self = shift; $self = fields::new($self) unless ref $self; my $sock = shift; $self->{sock} = $sock; my $fd = fileno($sock); $self->{fd} = $fd; $self->{write_buf} = []; $self->{write_buf_offset} = 0; $self->{write_buf_size} = 0; $self->{closed} = 0; $self->{corked} = 0; $self->{read_push_back} = []; $self->{event_watch} = POLLERR|POLLHUP|POLLNVAL; init_poller(); if ($HaveEpoll) { epoll_ctl($Epoll, EPOLL_CTL_ADD, $fd, $self->{event_watch}) and die "couldn't add epoll watch for $fd\n"; } elsif ($HaveKQueue) { # Add them to the queue but disabled for now $KQueue->EV_SET($fd, IO::KQueue::EVFILT_READ(), IO::KQueue::EV_ADD() | IO::KQueue::EV_DISABLE()); $KQueue->EV_SET($fd, IO::KQueue::EVFILT_WRITE(), IO::KQueue::EV_ADD() | IO::KQueue::EV_DISABLE()); } $DescriptorMap{$fd} = $self; return $self; } ##################################################################### ### I N S T A N C E M E T H O D S ##################################################################### ### METHOD: tcp_cork( $boolean ) ### Turn TCP_CORK on or off depending on the value of I. sub tcp_cork { my Danga::Socket $self = $_[0]; my $val = $_[1]; # make sure we have a socket return unless $self->{sock}; return if $val == $self->{corked}; # FIXME: Linux-specific. my $rv = setsockopt($self->{sock}, IPPROTO_TCP, TCP_CORK, pack("l", $val ? 1 : 0)); # if we failed, close (if we're not already) and warn about the error if ($rv) { $self->{corked} = $val; } else { if ($! == EBADF || $! == ENOTSOCK) { # internal state is probably corrupted; warn and then close if # we're not closed already warn "setsockopt: $!"; $self->close('tcp_cork_failed'); } elsif ($! == ENOPROTOOPT) { # TCP implementation doesn't support corking, so just ignore it } else { # some other error; we should never hit here, but if we do, die die "setsockopt: $!"; } } } ### METHOD: steal_socket ### Basically returns our socket and makes it so that we don't try to close it, ### but we do remove it from epoll handlers. THIS CLOSES $self. It is the same ### thing as calling close, except it gives you the socket to use. sub steal_socket { my Danga::Socket $self = $_[0]; return if $self->{closed}; # cleanup does most of the work of closing this socket $self->_cleanup(); # now undef our internal sock and fd structures so we don't use them my $sock = $self->{sock}; $self->{sock} = undef; return $sock; } ### METHOD: close( [$reason] ) ### Close the socket. The I argument will be used in debugging messages. sub close { my Danga::Socket $self = $_[0]; return if $self->{closed}; # print out debugging info for this close if (DebugLevel) { my ($pkg, $filename, $line) = caller; my $reason = $_[1] || ""; print STDERR "Closing \#$self->{fd} due to $pkg/$filename/$line ($reason)\n"; } # this does most of the work of closing us $self->_cleanup(); # defer closing the actual socket until the event loop is done # processing this round of events. (otherwise we might reuse fds) if ($self->{sock}) { push @ToClose, $self->{sock}; $self->{sock} = undef; } return 0; } ### METHOD: _cleanup() ### Called by our closers so we can clean internal data structures. sub _cleanup { my Danga::Socket $self = $_[0]; # we're effectively closed; we have no fd and sock when we leave here $self->{closed} = 1; # we need to flush our write buffer, as there may # be self-referential closures (sub { $client->close }) # preventing the object from being destroyed $self->{write_buf} = []; # uncork so any final data gets sent. only matters if the person closing # us forgot to do it, but we do it to be safe. $self->tcp_cork(0); # if we're using epoll, we have to remove this from our epoll fd so we stop getting # notifications about it if ($HaveEpoll && $self->{fd}) { if (epoll_ctl($Epoll, EPOLL_CTL_DEL, $self->{fd}, $self->{event_watch}) != 0) { # dump_error prints a backtrace so we can try to figure out why this happened $self->dump_error("epoll_ctl(): failure deleting fd=$self->{fd} during _cleanup(); $! (" . ($!+0) . ")"); } } # now delete from mappings. this fd no longer belongs to us, so we don't want # to get alerts for it if it becomes writable/readable/etc. delete $DescriptorMap{$self->{fd}}; delete $PushBackSet{$self->{fd}}; # and finally get rid of our fd so we can't use it anywhere else $self->{fd} = undef; } ### METHOD: sock() ### Returns the underlying IO::Handle for the object. sub sock { my Danga::Socket $self = shift; return $self->{sock}; } ### METHOD: write( $data ) ### Write the specified data to the underlying handle. I may be scalar, ### scalar ref, code ref (to run when there), or undef just to kick-start. ### Returns 1 if writes all went through, or 0 if there are writes in queue. If ### it returns 1, caller should stop waiting for 'writable' events) sub write { my Danga::Socket $self; my $data; ($self, $data) = @_; # nobody should be writing to closed sockets, but caller code can # do two writes within an event, have the first fail and # disconnect the other side (whose destructor then closes the # calling object, but it's still in a method), and then the # now-dead object does its second write. that is this case. we # just lie and say it worked. it'll be dead soon and won't be # hurt by this lie. return 1 if $self->{closed}; my $bref; # just queue data if there's already a wait my $need_queue; if (defined $data) { $bref = ref $data ? $data : \$data; if ($self->{write_buf_size}) { push @{$self->{write_buf}}, $bref; $self->{write_buf_size} += ref $bref eq "SCALAR" ? length($$bref) : 1; return 0; } # this flag says we're bypassing the queue system, knowing we're the # only outstanding write, and hoping we don't ever need to use it. # if so later, though, we'll need to queue $need_queue = 1; } WRITE: while (1) { return 1 unless $bref ||= $self->{write_buf}[0]; my $len; eval { $len = length($$bref); # this will die if $bref is a code ref, caught below }; if ($@) { if (ref $bref eq "CODE") { unless ($need_queue) { $self->{write_buf_size}--; # code refs are worth 1 shift @{$self->{write_buf}}; } $bref->(); # code refs are just run and never get reenqueued # (they're one-shot), so turn off the flag indicating the # outstanding data needs queueing. $need_queue = 0; undef $bref; next WRITE; } die "Write error: $@ <$bref>"; } my $to_write = $len - $self->{write_buf_offset}; my $written = syswrite($self->{sock}, $$bref, $to_write, $self->{write_buf_offset}); if (! defined $written) { if ($! == EPIPE) { return $self->close("EPIPE"); } elsif ($! == EAGAIN) { # since connection has stuff to write, it should now be # interested in pending writes: if ($need_queue) { push @{$self->{write_buf}}, $bref; $self->{write_buf_size} += $len; } $self->watch_write(1); return 0; } elsif ($! == ECONNRESET) { return $self->close("ECONNRESET"); } DebugLevel >= 1 && $self->debugmsg("Closing connection ($self) due to write error: $!\n"); return $self->close("write_error"); } elsif ($written != $to_write) { DebugLevel >= 2 && $self->debugmsg("Wrote PARTIAL %d bytes to %d", $written, $self->{fd}); if ($need_queue) { push @{$self->{write_buf}}, $bref; $self->{write_buf_size} += $len; } # since connection has stuff to write, it should now be # interested in pending writes: $self->{write_buf_offset} += $written; $self->{write_buf_size} -= $written; $self->watch_write(1); return 0; } elsif ($written == $to_write) { DebugLevel >= 2 && $self->debugmsg("Wrote ALL %d bytes to %d (nq=%d)", $written, $self->{fd}, $need_queue); $self->{write_buf_offset} = 0; # this was our only write, so we can return immediately # since we avoided incrementing the buffer size or # putting it in the buffer. we also know there # can't be anything else to write. return 1 if $need_queue; $self->{write_buf_size} -= $written; shift @{$self->{write_buf}}; undef $bref; next WRITE; } } } ### METHOD: push_back_read( $buf ) ### Push back I (a scalar or scalarref) into the read stream sub push_back_read { my Danga::Socket $self = shift; my $buf = shift; push @{$self->{read_push_back}}, ref $buf ? $buf : \$buf; $PushBackSet{$self->{fd}} = $self; } ### METHOD: read( $bytecount ) ### Read at most I bytes from the underlying handle; returns scalar ### ref on read, or undef on connection closed. sub read { my Danga::Socket $self = shift; my $bytes = shift; my $buf; my $sock = $self->{sock}; if (@{$self->{read_push_back}}) { $buf = shift @{$self->{read_push_back}}; my $len = length($$buf); if ($len <= $buf) { unless (@{$self->{read_push_back}}) { delete $PushBackSet{$self->{fd}}; } return $buf; } else { # if the pushed back read is too big, we have to split it my $overflow = substr($$buf, $bytes); $buf = substr($$buf, 0, $bytes); unshift @{$self->{read_push_back}}, \$overflow, return \$buf; } } my $res = sysread($sock, $buf, $bytes, 0); DebugLevel >= 2 && $self->debugmsg("sysread = %d; \$! = %d", $res, $!); if (! $res && $! != EWOULDBLOCK) { # catches 0=conn closed or undef=error DebugLevel >= 2 && $self->debugmsg("Fd \#%d read hit the end of the road.", $self->{fd}); return undef; } return \$buf; } ### (VIRTUAL) METHOD: event_read() ### Readable event handler. Concrete deriviatives of Danga::Socket should ### provide an implementation of this. The default implementation will die if ### called. sub event_read { die "Base class event_read called for $_[0]\n"; } ### (VIRTUAL) METHOD: event_err() ### Error event handler. Concrete deriviatives of Danga::Socket should ### provide an implementation of this. The default implementation will die if ### called. sub event_err { die "Base class event_err called for $_[0]\n"; } ### (VIRTUAL) METHOD: event_hup() ### 'Hangup' event handler. Concrete deriviatives of Danga::Socket should ### provide an implementation of this. The default implementation will die if ### called. sub event_hup { die "Base class event_hup called for $_[0]\n"; } ### METHOD: event_write() ### Writable event handler. Concrete deriviatives of Danga::Socket may wish to ### provide an implementation of this. The default implementation calls ### C with an C. sub event_write { my $self = shift; $self->write(undef); } ### METHOD: watch_read( $boolean ) ### Turn 'readable' event notification on or off. sub watch_read { my Danga::Socket $self = shift; return if $self->{closed} || !$self->{sock}; my $val = shift; my $event = $self->{event_watch}; $event &= ~POLLIN if ! $val; $event |= POLLIN if $val; # If it changed, set it if ($event != $self->{event_watch}) { if ($HaveKQueue) { $KQueue->EV_SET($self->{fd}, IO::KQueue::EVFILT_READ(), $val ? IO::KQueue::EV_ENABLE() : IO::KQueue::EV_DISABLE()); } elsif ($HaveEpoll) { epoll_ctl($Epoll, EPOLL_CTL_MOD, $self->{fd}, $event) and $self->dump_error("couldn't modify epoll settings for $self->{fd} " . "from $self->{event_watch} -> $event: $! (" . ($!+0) . ")"); } $self->{event_watch} = $event; } } ### METHOD: watch_write( $boolean ) ### Turn 'writable' event notification on or off. sub watch_write { my Danga::Socket $self = shift; return if $self->{closed} || !$self->{sock}; my $val = shift; my $event = $self->{event_watch}; $event &= ~POLLOUT if ! $val; $event |= POLLOUT if $val; # If it changed, set it if ($event != $self->{event_watch}) { if ($HaveKQueue) { $KQueue->EV_SET($self->{fd}, IO::KQueue::EVFILT_WRITE(), $val ? IO::KQueue::EV_ENABLE() : IO::KQueue::EV_DISABLE()); } elsif ($HaveEpoll) { epoll_ctl($Epoll, EPOLL_CTL_MOD, $self->{fd}, $event) and $self->dump_error("couldn't modify epoll settings for $self->{fd} " . "from $self->{event_watch} -> $event: $! (" . ($!+0) . ")"); } $self->{event_watch} = $event; } } # METHOD: dump_error( $message ) # Prints to STDERR a backtrace with information about this socket and what lead # up to the dump_error call. sub dump_error { my $i = 0; my @list; while (my ($file, $line, $sub) = (caller($i++))[1..3]) { push @list, "\t$file:$line called $sub\n"; } print STDERR "ERROR: $_[1]\n" . "\t$_[0] = " . $_[0]->as_string . "\n" . join('', @list); } ### METHOD: debugmsg( $format, @args ) ### Print the debugging message specified by the C-style I and ### I if the object's C is greater than or equal to the given ### I. sub debugmsg { my ( $self, $fmt, @args ) = @_; confess "Not an object" unless ref $self; chomp $fmt; printf STDERR ">>> $fmt\n", @args; } ### METHOD: peer_ip_string() ### Returns the string describing the peer's IP sub peer_ip_string { my Danga::Socket $self = shift; return undef unless $self->{sock}; my $pn = getpeername($self->{sock}) or return undef; my ($port, $iaddr) = Socket::sockaddr_in($pn); return Socket::inet_ntoa($iaddr); } ### METHOD: peer_addr_string() ### Returns the string describing the peer for the socket which underlies this ### object in form "ip:port" sub peer_addr_string { my Danga::Socket $self = shift; return undef unless $self->{sock}; my $pn = getpeername($self->{sock}) or return undef; my ($port, $iaddr) = Socket::sockaddr_in($pn); return Socket::inet_ntoa($iaddr) . ":$port"; } ### METHOD: as_string() ### Returns a string describing this socket. sub as_string { my Danga::Socket $self = shift; my $rw = "(" . ($self->{event_watch} & POLLIN ? 'R' : '') . ($self->{event_watch} & POLLOUT ? 'W' : '') . ")"; my $ret = ref($self) . "$rw: " . ($self->{closed} ? "closed" : "open"); my $peer = $self->peer_addr_string; if ($peer) { $ret .= " to " . $self->peer_addr_string; } return $ret; } ### CLASS METHOD: SetPostLoopCallback ### Sets post loop callback function. Pass a subref and it will be ### called every time the event loop finishes. Return 1 from the sub ### to make the loop continue, else it will exit. The function will ### be passed two parameters: \%DescriptorMap, \%OtherFds. sub SetPostLoopCallback { my ($class, $ref) = @_; $PostLoopCallback = (defined $ref && ref $ref eq 'CODE') ? $ref : undef; } ##################################################################### ### U T I L I T Y F U N C T I O N S ##################################################################### our ($SYS_epoll_create, $SYS_epoll_ctl, $SYS_epoll_wait); if ($^O eq "linux") { my ($sysname, $nodename, $release, $version, $machine) = POSIX::uname(); # whether the machine requires 64-bit numbers to be on 8-byte # boundaries. my $u64_mod_8 = 0; if ($machine =~ m/^i[3456]86$/) { $SYS_epoll_create = 254; $SYS_epoll_ctl = 255; $SYS_epoll_wait = 256; } elsif ($machine eq "x86_64") { $SYS_epoll_create = 213; $SYS_epoll_ctl = 233; $SYS_epoll_wait = 232; } elsif ($machine eq "ppc64") { $SYS_epoll_create = 236; $SYS_epoll_ctl = 237; $SYS_epoll_wait = 238; $u64_mod_8 = 1; } elsif ($machine eq "ppc") { $SYS_epoll_create = 236; $SYS_epoll_ctl = 237; $SYS_epoll_wait = 238; $u64_mod_8 = 1; } elsif ($machine eq "ia64") { $SYS_epoll_create = 1243; $SYS_epoll_ctl = 1244; $SYS_epoll_wait = 1245; $u64_mod_8 = 1; } if ($u64_mod_8) { *epoll_wait = \&epoll_wait_mod8; *epoll_ctl = \&epoll_ctl_mod8; } else { *epoll_wait = \&epoll_wait_mod4; *epoll_ctl = \&epoll_ctl_mod4; } # if syscall numbers have been defined (and this module has been # tested on) the arch above, then try to use it. try means see if # the syscall is implemented. it may well be that this is Linux # 2.4 and we don't even have it available. $TryEpoll = 1 if $SYS_epoll_create; } # epoll_create wrapper # ARGS: (size) sub epoll_create { my $epfd = eval { syscall($SYS_epoll_create, $_[0]) }; return -1 if $@; return $epfd; } # epoll_ctl wrapper # ARGS: (epfd, op, fd, events_mask) sub epoll_ctl_mod4 { syscall($SYS_epoll_ctl, $_[0]+0, $_[1]+0, $_[2]+0, pack("LLL", $_[3], $_[2], 0)); } sub epoll_ctl_mod8 { syscall($SYS_epoll_ctl, $_[0]+0, $_[1]+0, $_[2]+0, pack("LLLL", $_[3], 0, $_[2], 0)); } # epoll_wait wrapper # ARGS: (epfd, maxevents, timeout (milliseconds), arrayref) # arrayref: values modified to be [$fd, $event] our $epoll_wait_events; our $epoll_wait_size = 0; sub epoll_wait_mod4 { # resize our static buffer if requested size is bigger than we've ever done if ($_[1] > $epoll_wait_size) { $epoll_wait_size = $_[1]; $epoll_wait_events = "\0" x 12 x $epoll_wait_size; } my $ct = syscall($SYS_epoll_wait, $_[0]+0, $epoll_wait_events, $_[1]+0, $_[2]+0); for ($_ = 0; $_ < $ct; $_++) { @{$_[3]->[$_]}[1,0] = unpack("LL", substr($epoll_wait_events, 12*$_, 8)); } return $ct; } sub epoll_wait_mod8 { # resize our static buffer if requested size is bigger than we've ever done if ($_[1] > $epoll_wait_size) { $epoll_wait_size = $_[1]; $epoll_wait_events = "\0" x 16 x $epoll_wait_size; } my $ct = syscall($SYS_epoll_wait, $_[0]+0, $epoll_wait_events, $_[1]+0, $_[2]+0); for ($_ = 0; $_ < $ct; $_++) { # 16 byte epoll_event structs, with format: # 4 byte mask [idx 1] # 4 byte padding (we put it into idx 2, useless) # 8 byte data (first 4 bytes are fd, into idx 0) @{$_[3]->[$_]}[1,2,0] = unpack("LLL", substr($epoll_wait_events, 16*$_, 12)); } return $ct; } 1; # Local Variables: # mode: perl # c-basic-indent: 4 # indent-tabs-mode: nil # End: