twobuttonstimer/DS1307RTC/DS1307RTC.cpp

219 lines
5.9 KiB
C++

/*
* DS1307RTC.h - library for DS1307 RTC
Copyright (c) Michael Margolis 2009
This library is intended to be uses with Arduino Time library functions
The library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
30 Dec 2009 - Initial release
5 Sep 2011 updated for Arduino 1.0
*/
#if defined (__AVR_ATtiny84__) || defined(__AVR_ATtiny85__) || (__AVR_ATtiny2313__)
#include <TinyWireM.h>
#define Wire TinyWireM
#else
#include <Wire.h>
#endif
#include "DS1307RTC.h"
#define DS1307_CTRL_ID 0x68
DS1307RTC::DS1307RTC()
{
Wire.begin();
}
// PUBLIC FUNCTIONS
time_t DS1307RTC::get() // Aquire data from buffer and convert to time_t
{
tmElements_t tm;
if (read(tm) == false) return 0;
return(makeTime(tm));
}
bool DS1307RTC::set(time_t t)
{
tmElements_t tm;
breakTime(t, tm);
return write(tm);
}
// Aquire data from the RTC chip in BCD format
bool DS1307RTC::read(tmElements_t &tm)
{
uint8_t sec;
Wire.beginTransmission(DS1307_CTRL_ID);
#if ARDUINO >= 100
Wire.write((uint8_t)0x00);
#else
Wire.send(0x00);
#endif
if (Wire.endTransmission() != 0) {
exists = false;
return false;
}
exists = true;
// request the 7 data fields (secs, min, hr, dow, date, mth, yr)
Wire.requestFrom(DS1307_CTRL_ID, tmNbrFields);
if (Wire.available() < tmNbrFields) return false;
#if ARDUINO >= 100
sec = Wire.read();
tm.Second = bcd2dec(sec & 0x7f);
tm.Minute = bcd2dec(Wire.read() );
tm.Hour = bcd2dec(Wire.read() & 0x3f); // mask assumes 24hr clock
tm.Wday = bcd2dec(Wire.read() );
tm.Day = bcd2dec(Wire.read() );
tm.Month = bcd2dec(Wire.read() );
tm.Year = y2kYearToTm((bcd2dec(Wire.read())));
#else
sec = Wire.receive();
tm.Second = bcd2dec(sec & 0x7f);
tm.Minute = bcd2dec(Wire.receive() );
tm.Hour = bcd2dec(Wire.receive() & 0x3f); // mask assumes 24hr clock
tm.Wday = bcd2dec(Wire.receive() );
tm.Day = bcd2dec(Wire.receive() );
tm.Month = bcd2dec(Wire.receive() );
tm.Year = y2kYearToTm((bcd2dec(Wire.receive())));
#endif
if (sec & 0x80) return false; // clock is halted
return true;
}
bool DS1307RTC::write(tmElements_t &tm)
{
// To eliminate any potential race conditions,
// stop the clock before writing the values,
// then restart it after.
Wire.beginTransmission(DS1307_CTRL_ID);
#if ARDUINO >= 100
Wire.write((uint8_t)0x00); // reset register pointer
Wire.write((uint8_t)0x80); // Stop the clock. The seconds will be written last
Wire.write(dec2bcd(tm.Minute));
Wire.write(dec2bcd(tm.Hour)); // sets 24 hour format
Wire.write(dec2bcd(tm.Wday));
Wire.write(dec2bcd(tm.Day));
Wire.write(dec2bcd(tm.Month));
Wire.write(dec2bcd(tmYearToY2k(tm.Year)));
#else
Wire.send(0x00); // reset register pointer
Wire.send(0x80); // Stop the clock. The seconds will be written last
Wire.send(dec2bcd(tm.Minute));
Wire.send(dec2bcd(tm.Hour)); // sets 24 hour format
Wire.send(dec2bcd(tm.Wday));
Wire.send(dec2bcd(tm.Day));
Wire.send(dec2bcd(tm.Month));
Wire.send(dec2bcd(tmYearToY2k(tm.Year)));
#endif
if (Wire.endTransmission() != 0) {
exists = false;
return false;
}
exists = true;
// Now go back and set the seconds, starting the clock back up as a side effect
Wire.beginTransmission(DS1307_CTRL_ID);
#if ARDUINO >= 100
Wire.write((uint8_t)0x00); // reset register pointer
Wire.write(dec2bcd(tm.Second)); // write the seconds, with the stop bit clear to restart
#else
Wire.send(0x00); // reset register pointer
Wire.send(dec2bcd(tm.Second)); // write the seconds, with the stop bit clear to restart
#endif
if (Wire.endTransmission() != 0) {
exists = false;
return false;
}
exists = true;
return true;
}
unsigned char DS1307RTC::isRunning()
{
Wire.beginTransmission(DS1307_CTRL_ID);
#if ARDUINO >= 100
Wire.write((uint8_t)0x00);
#else
Wire.send(0x00);
#endif
Wire.endTransmission();
// Just fetch the seconds register and check the top bit
Wire.requestFrom(DS1307_CTRL_ID, 1);
#if ARDUINO >= 100
return !(Wire.read() & 0x80);
#else
return !(Wire.receive() & 0x80);
#endif
}
void DS1307RTC::setCalibration(char calValue)
{
unsigned char calReg = abs(calValue) & 0x1f;
if (calValue >= 0) calReg |= 0x20; // S bit is positive to speed up the clock
Wire.beginTransmission(DS1307_CTRL_ID);
#if ARDUINO >= 100
Wire.write((uint8_t)0x07); // Point to calibration register
Wire.write(calReg);
#else
Wire.send(0x07); // Point to calibration register
Wire.send(calReg);
#endif
Wire.endTransmission();
}
char DS1307RTC::getCalibration()
{
Wire.beginTransmission(DS1307_CTRL_ID);
#if ARDUINO >= 100
Wire.write((uint8_t)0x07);
#else
Wire.send(0x07);
#endif
Wire.endTransmission();
Wire.requestFrom(DS1307_CTRL_ID, 1);
#if ARDUINO >= 100
unsigned char calReg = Wire.read();
#else
unsigned char calReg = Wire.receive();
#endif
char out = calReg & 0x1f;
if (!(calReg & 0x20)) out = -out; // S bit clear means a negative value
return out;
}
// PRIVATE FUNCTIONS
// Convert Decimal to Binary Coded Decimal (BCD)
uint8_t DS1307RTC::dec2bcd(uint8_t num)
{
return ((num/10 * 16) + (num % 10));
}
// Convert Binary Coded Decimal (BCD) to Decimal
uint8_t DS1307RTC::bcd2dec(uint8_t num)
{
return ((num/16 * 10) + (num % 16));
}
bool DS1307RTC::exists = false;
DS1307RTC RTC = DS1307RTC(); // create an instance for the user